Quick Start Guide

Speed, Accurate, Easy. Measure On.

OASIS Inspection Systems
110 Sleepy Hollow Drive
Middletown, DE 19709
(302) 449-0199 मִONE
(302) 449-0288 fax

Table of Contents

OASIS Software \& Programming Basics 1 -
Using this Guide $2-$
Practice Drawing Boxes - 3 -
Step \#1 - Track Part with Horizontal Edge - 4 -
Step \#2 - Locate Stage with Vertical Edge - 5 -
Step \#3 - Save Program - 6 -
Step \#4 - Measure Diameter 7 -
Step \#5 - Measure Height - 8 -
Step \#6 - Measure Horizontal Distance -9-
Step \#7 - Locate Corners - 10 -
Step \#8 - Measure Vertical Distance - 11 -
Step \#9 - Measure Corner Radius - 12 -
Step \#10 - Measure Circle - 13 -
Step \#11 - Locate Angular Edges 14-
Step \#12 - Measure Angle - 15 -
Step \#13 - Save Program - 16 -
Step \#14 - Store Data - 17 -
Step \#15 - Run Report 18 -
OASIS Inspection Report - 19 -
Completed Program - 20 -

OASIS Software \& Programming Basics

If you have any questions using this guide, please call OASIS Inspection Systems at: (302) 449-0199.

This guide utilizes an image of a sample part to demonstrate the programming basics. It is a $1 / 2$ " barbed hose adapter, Part \# 5440K114.

To use this guide, launch the OASIS software by clicking on the OASIS icon on the desktop.

Select "File", then "Load Image". Select "5440K114.bmp" and click "Open". This will load a saved image of the Sample Part and you can program on that image, just as if the part were sitting on the OASIS.

| File | Options Tools Secy |
| :--- | :--- | :--- |
| Open | |
| Recent | |
| Search | |
| | Barcode Scan |
| | Save |
| | Save As |
| | Save Image |
| | Load Image |
| | |
| | |

1) The numbers in these instructions match the numbers and red arrows in the screen capture above. For example, if this instruction (\#1) indicated to click the "Help", then the \#1 arrow in the screen capture would be pointing to the appropriate place on the screen, as shown.
2) The size and position of the edge detection boxes are important. Try to locate the boxes as they appear on the image.
3) To clear the screen and start over at any time, click the "NEW" icon \square
CAUTION: Clicking on the NEW Icon will clear the current program and any unsaved work will be lost! You may have to restart.

Practice Drawing Boxes

Drawing edge detection boxes is really easy; it's simply Click, Drag, and Drop

1) To practice drawing edge boxes, begin by left clicking on the Horizontal Edge Tool

2) Click: Move the cursor to a location where the first corner of the box will start. Left click and hold the mouse button down.
3) Drag: While still holding the mouse button down, drag the cursor to size the box around the edge.
4) Drop: Release the mouse button to drop \& lock the size of the box.
5) Click the Recycle Bin to clear the screen. Repeat these steps as needed before moving on. To surround the edge, the box starts above (or below) and to the left (or right) of the edge.

Step \#1 - Track Part with Horizontal Edge

1) Locate a horizontal edge on the part by first left clicking on the Horizontal Edge Tool When you move the cursor, it will appear with the word "NEW" 䠌
2) Draw an edge detection box around the edge to be found, as shown.
3) Right-click, select "Edge Properties", and check the box labeled "Track Edge". Click OK.

NOTE: Unless needed to completely start over, do not delete your work or clear the screen as you progress. This guide is written in order, where one step relies on another to keep moving forward.

Step \#2 - Locate Stage with Vertical Edge

1) Locate the stage edge by first left clicking on the Vertical Edge Tool $\underset{\text { EDGE }}{\rightarrow}$. The cursor will appear with the word "NEW".
2) Draw an edge detection box around the edge to be found, as shown.
3) Right-click, select "Edge Properties", check the boxes labeled "Track Edge" and "Lock Y". Click OK.

Step \#3 - Save Program

1) Save the program by clicking the Save Icon

You can also choose "File", then "Save".
2) Enter the desired name of the program.
3) Click "Save".

NOTE: Saving early and often is a good practice to protect against unexpected loss of work.

Step \#4 - Measure Diameter

1) First, left click on the Diameter Tool | $\overline{\frac{1}{D I A}}$ |
| :---: |
| . The cursor will appear with the word "NEW". |
2) Draw an edge detection box over the diameter to be measured, as shown.
3) Right click, and then select "Tolerance". Enter 0.570 in Nominal and 0.005 in +/- Tol. A warning level can also be entered in the $+/-$ Warn field. In this example, 20% is entered to give a warning level that is 20% to the Low and 20% to the High sides. Click OK.

NOTE: To start a measurement over, remove the box by right clicking, then select "Delete".

Step \#5 - Measure Height

1) First, left click on the Height Tool HEIGHT. The cursor will appear with the word "NEW".
2) Draw an edge detection box over the height to be measured, as shown.
3) Right click, and then select "Tolerance". Enter 0.145 in Nominal and 0.005 in +/- Tol. Enter 20% in the +/- Warn field.

NOTE: To go back to a previously saved version of the program, click the NEW icon and then click OK to clear the current program. Click "File", and then "Open". Select the proper program, and then click "Open". Click the Edit Icon to unlock the program and uncheck "Hide Tool Windows" in the lower right-hand corner of the screen.

NOTE: A height is two vertical edges that are parallel.

Step \#6 - Measure Horizontal Distance

1) First, left click on the Vertical Edge Tool $\stackrel{-\infty}{\overrightarrow{C D G E}}$. The cursor will appear with the word "NEW".
2) Draw an edge detection box around the edge to be used, as shown.

3) Left click on the stage edge box; the cursor will then appear with " 2 EDGE" .
4) Left click on the edge box that you first drew to get the distance measurement.
5) Right click, and then select "Tolerance". Enter 0.420 in Nominal and 0.005 in +/- Tol. Enter 20% in the $+/-$ Warn, Click OK.

Step \#7 - Locate Corners

1) Left click on the Corner Tool corn. The cursor will appear with the word "NEW".
2) Draw a detection box to locate the corner (theoretical intersection) desired, as shown.
3) Again, left click on the Corner Tool CORN . The cursor will appear with the word "NEW".
4) Draw a detection box to locate another second corner, as shown.

NOTE: You can save your work at any time by saving the program, as was done in Step \#3.

Step \#8 - Measure Vertical Distance

1) To begin, left click on the Distance Tool \square 몬 DIST The cursor will appear with "1 EDGE".
2) Left click on first corner box; the cursor will then appear with " 2 EDGE".
3) Left click on the other corner box to get the distance measurement.
4) Right click, and then select "Tolerance". Enter 0.425 in Nominal and 0.015 in +/- Tol. Enter 20\% in +/- Warn. Click OK.

Step \#9 - Measure Corner Radius

1) Left click on the Corner Tool $\xrightarrow{- \text {-龱 }}$. The cursor will appear with the word "NEW".
2) Draw a detection box to locate the corner with a radius to be measured, as shown.
3) Right click and select "Corner Properties", then check the box labeled "Enable" under radius. Click OK
4) Right click, and then select "Tolerance". Enter 0.015 in Nominal and 0.005 in +/- Tol. Enter 20% in +/- Warn, Click OK.

12

Step \#10 - Measure Circle

1) Start by left clicking the Circle Tool | CIRCLE |
| :---: | . The cursor will appear with the word "NEW".
2) Draw a detection box around the circle to be measured, as shown.
3) Right click and select "Circle Properties", then check the box labeled "Diameter". Click OK
4) Right click, and then select "Tolerance". Enter 0.640 in Nominal and 0.005 in +/- Tol. Enter 20\% in +/- Warn, Click OK.

Step \#11 - Locate Angular Edges

1) Left click on the Angular Edge Tool $\underset{\text { EDGE }}{ }$. The cursor will appear with the word "NEW",
2) Draw an edge detection box around the angular edge to be located, as shown
3) Again, left click on the Angular Edge Tool

The cursor will appear with the word "NEW".
4) Draw another edge detection box around the second angular edge to be located, as shown

NOTE: When drawing edge detection boxes for angular edges, make certain to draw the box only over the angle to be located - not covering any adjacent features.

14

Step \#12 - Measure Angle

1) Left click on the Angle Tool

2) Left click on first angular edge box; the cursor will then appear with "2 EDGE".
3) Left click on the other angular edge box to get the relative angle measurement.
4) Right click and select "Angle Properties". Change the tool name to BARB-1. Click OK
5) Right click, and then select "Tolerance". Enter 16.00 in Nominal and 2.00 in +/- Tol. Enter 20% in +/- Warn, Click OK.

NOTE: The angle measurement points to the first edge selected, and the angle can be measured relative to any other edge (Horizontal, Vertical, or Angular).

Step \#13 - Save Program

1) Save the program by clicking on the Save Icon
\square
You can also choose "File", then "Save".
2) Since this program was previously saved, a dialog box will ask you to confirm saving over the previous program file. Click "Yes" to save the current program and overwrite the existing.

Step \#14 - Store Data

1) Left click the Data Icon $\frac{\text { DATA }}{\frac{A}{\text { DAT }}}$ to store the measurements on the Oasis.
2) A dialog box will appear confirming that your measurements were successfully stored.

Step \#15 - Run Report

1) Click the Create Report Icon	Create
Report	to launch the OASIS Inspection Report.

OASIS Inspection Report

This image shows the Oasis Inspection Report created from Step \#15. To save this report:

1) Left click on "File".
2) Select "Save Report".
3) Name the Report. By default the Report will be named the same as the Part Program name with Date and Time.

Completed Program

Congratulations! In the previous steps, you've created an Oasis part program, saved it for future use, measured your first part and created an inspection report. If you continue with all the features on the part, your completed Oasis measurement program might look like this.

NOTE: Dimensions in green are good; red are measurements that are outside of tolerances. Yellow dimensions may appear if you use the +/- Warn to set Warning levels. Yellow dimensions are within the tolerance range but within 20% of the limits, either to the high or low side.

OASIS

INSPECTION SYSTEMS

Your local OASIS Distributor is:

Speed, Accurate, Easy. Measure On.

OASIS Inspection Systems
110 Sleepy Hollow Drive Middletown, DE 19709
(302) 449-0199 PHONE (302) 449-0288 fax

